A278973 Number of divisors of the n-th Bell number (A000110(n)).
1, 1, 2, 2, 4, 6, 4, 2, 36, 16, 6, 16, 8, 2, 8, 8, 4, 30, 8, 12, 36, 16, 64, 16, 8, 64, 32, 64, 16, 48, 64, 4, 24, 4, 16, 96, 16, 8, 16, 8, 8, 48, 2, 128, 48, 32, 16, 128, 16, 4, 32, 8, 24, 48, 8, 2, 1728, 8, 8, 32, 8, 128, 8, 128, 16, 24, 64, 8, 24, 16, 16
Offset: 0
Keywords
Examples
Bell(17) = A000110(17) = 82864869804 = 2^2 * 3^4 * 255755771^1; exponents are 2, 4, 1, so its number of divisors is (2+1)*(4+1)*(1+1) = 3*5*2 = 30; thus a(17) = 30. Bell(56) = A000110(56) = 6775685320645824322581483068371419745979053216268760300 = 2^2 * 3*2 * 5^2 * 7^1 * 43^1 * 481531^1 * 5134193^1 * 206802391^1 * 48920650786823172374961445939^1; exponents are 2, 2, 2, 1, 1, 1, 1, 1, 1, so its number of divisors is (2+1)^3 * (1+1)^6 = 1728; thus a(56) = 1728.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..104
Programs
-
Mathematica
DivisorSigma[0,BellB[Range[0,70]]] (* Harvey P. Dale, Mar 04 2019 *)
-
Python
from sympy import bell, divisor_count def A278973(n): return divisor_count(bell(n)) # Chai Wah Wu, Jun 22 2022