A278984 Array read by antidiagonals downwards: T(b,n) = number of words of length n over an alphabet of size b that are in standard order.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 14, 5, 2, 1, 1, 32, 41, 15, 5, 2, 1, 1, 64, 122, 51, 15, 5, 2, 1, 1, 128, 365, 187, 52, 15, 5, 2, 1, 1, 256, 1094, 715, 202, 52, 15, 5, 2, 1, 1, 512, 3281, 2795, 855, 203, 52, 15, 5, 2, 1, 1, 1024, 9842, 11051, 3845, 876, 203, 52, 15, 5, 2, 1
Offset: 1
Examples
The array begins: 1,.1,..1,...1,...1,...1,...1,....1..; b=1, A000012 1,.2,..4,...8,..16,..32,..64,..128..; b=2, A000079 1,.2,..5,..14,..41,.122,.365,.1094..; b=3, A007051 (A278985) 1,.2,..5,..15,..51,.187,.715,.2795..; b=4, A007581 1,.2,..5,..15,..52,.202,.855,.3845..; b=5, A056272 1,.2,..5,..15,..52,.203,.876,.4111..; b=6, A056273 ... The rows tend to A000110.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Pengyu Liu and Jingzhou Na, Word Motifs and a Generalized Hamming Distance, Contemp. Math. (2025) Vol. 6, Issue 1, 1255-1264. See p. 1257.
Crossrefs
Programs
-
Maple
with(combinat); f1:=proc(L,b) local t1;i; t1:=add(stirling2(L,i),i=1..b); end: Q1:=b->[seq(f1(L,b), L=1..20)]; # the rows of the array are Q1(1), Q1(2), Q1(3), ...
-
Mathematica
T[b_, n_] := Sum[StirlingS2[n, j], {j, 1, b}]; Table[T[b-n+1, n], {b, 1, 12}, {n, b, 1, -1}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
Formula
The number of words of length n over an alphabet of size b that are in standard order is Sum_{j = 1..b} Stirling2(n,j).
Comments