A278985 List of words of length n over an alphabet of size 3 that are in standard order.
1, 11, 12, 111, 112, 121, 122, 123, 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1222, 1223, 1231, 1232, 1233, 11111, 11112, 11121, 11122, 11123, 11211, 11212, 11213, 11221, 11222, 11223, 11231, 11232, 11233, 12111, 12112, 12113, 12121, 12122
Offset: 1
Links
- Rémy Sigrist and N. J. A. Sloane, Table of n, a(n) for n = 1..14767 [Terms 1 through 185 by N. J. A. Sloane]
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
Programs
-
Maple
b:= proc(n) option remember; `if`(n=1, [[1]], map(x-> seq([x[], i], i=1..min(3, max(x[])+1)), b(n-1))) end: T:= n-> map(x-> parse(cat(x[])), b(n))[]: seq(T(n), n=1..5); # Alois P. Heinz, Jan 02 2022
-
Mathematica
Table[FromDigits /@ Select[Tuples[Range@ 3, n], And[Times @@ Boole@ MapIndexed[#1 <= First@ #2 &, #] > 0, Max@ Differences@ # <= 1] &], {n, 5}] // Flatten (* Michael De Vlieger, Dec 18 2016 *)
-
PARI
gen(n, len, mx) = if (len==0, print1 (n ", "), for (d=1, min(mx+1, 3), gen(10*n + d, len-1, max(mx, d)))) for (len=1, 5, gen(0, len, 0)) \\ Rémy Sigrist, Dec 18 2016
Comments