cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278991 a(n) is the number of simple linear diagrams with n+1 chords.

Original entry on oeis.org

0, 1, 3, 24, 211, 2325, 30198, 452809, 7695777, 146193678, 3069668575, 70595504859, 1764755571192, 47645601726541, 1381657584006399, 42829752879449400, 1413337528735664887, 49465522112961344241, 1830184115528550306438, 71375848864779552073957
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := a[n] = (2 n - 1) a[n - 1] + (4 n - 3) a[n - 2] + (2 n - 4) a[n - 3]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1]=1; a[2]=3; a[3]=24;
      for (n=4, N, a[n] = (2*n-1)*a[n-1] + (4*n-3)*a[n-2] + (2*n-4)*a[n-3]);
      concat(0, a);
    };
    seq(20) \\ Gheorghe Coserea, Dec 10 2016
    
  • PARI
    N = 20; x = 'x + O('x^N);
    concat(0, Vec(serlaplace((1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x))))) \\ Gheorghe Coserea, Dec 10 2016

Formula

E.g.f.: (1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x)).
a(n) ~ 2^(n+3/2) * n^(n+1) / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
a(n) = (2*n-1)*a(n-1) + (4*n-3)*a(n-2) + (2*n-4)*a(n-3). - Gheorghe Coserea, Dec 10 2016

Extensions

Offset corrected by Gheorghe Coserea, Dec 10 2016

A278992 Number of simple chord-labeled chord diagrams with n chords.

Original entry on oeis.org

0, 1, 1, 21, 168, 1968, 26094, 398653, 6872377, 132050271, 2798695656, 64866063276, 1632224748984, 44316286165297, 1291392786926821, 40202651019430461, 1331640833909877144, 46762037794122159492, 1735328399106396110310, 67858430028772637693845
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    CoefficientList[(Sqrt[1 - 2t]+1)(1/Sqrt[1 - 2t])*E^(Sqrt[1 - 2t] - t - 1) - (2-t)/E^t + O[t]^(terms+1), t]*Range[0, terms]! // Rest (* Jean-François Alcover, Sep 14 2018 *)

Formula

E.g.f.: (1+sqrt(1-2*t))*(1-2*t)^(-1/2)*exp(-1-t+sqrt(1-2*t))-(2-t)*exp(-t).
a(n) ~ 2^(n+1/2) * n^n / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
Conjecture D-finite with recurrence: +(-n+2)*a(n) +(2*n^2-8*n+7)*a(n-1) +(6*n^2-18*n+11)*a(n-2) +(n-1)*(6*n-11)*a(n-3) +2*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 27 2020

A278993 Number of simple chord diagrams with n chords, up to rotation.

Original entry on oeis.org

0, 1, 1, 4, 21, 176, 1893, 25030, 382272, 6604535, 127222636, 2702798537, 62778105236, 1582725739329, 43046433007765, 1256332883208474, 39165907107963273, 1298945495674093932, 45666536827274985585, 1696460750775267473762
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

Showing 1-3 of 3 results.