A279004 Irregular triangle read by rows: generalized Catalan triangle C_3(n,k).
1, 1, 1, 1, 2, 3, 3, 1, 3, 6, 9, 9, 1, 4, 10, 19, 28, 28, 1, 5, 15, 34, 62, 90, 90, 1, 6, 21, 55, 117, 207, 297, 297, 1, 7, 28, 83, 200, 407, 704, 1001, 1001, 1, 8, 36, 119, 319, 726, 1430, 2431, 3432, 3432
Offset: 0
Examples
Triangle begins: 1,1,1, 1,2,3,3, 1,3,6,9,9, 1,4,10,19,28,28, 1,5,15,34,62,90,90, 1,6,21,55,117,207,297,297, 1,7,28,83,200,407,704,1001,1001, 1,8,36,119,319,726,1430,2431,3432,3432, ...
Links
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- S. J. Tedford, Combinatorial interpretations of convolutions of the Catalan numbers, Integers 11 (2011) #A3
Programs
-
Mathematica
c[m_][0, k_] /; k <= m-1 = 1; c[m_][n_, k_] /; 0 <= k <= m+n-1 := c[m][n, k] = c[m][n-1, k]+c[m][n, k-1]; c[][, _] = 0; Table[c[3][n, k], {n, 0, 7}, {k, 0, n+2}] // Flatten (* Jean-François Alcover, Oct 07 2018 *)
Comments