A279024 Number of extradivisors of n (m < n is an extradivisor of n if for some positive k < n, m | n | k^(n+1) + m and n | (n-k)^(n+1) + m).
0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1
Offset: 1
Keywords
Examples
1 is an extradivisor of 2 because 2 divides 1^(2+1) + 1 and (2-1)^(2+1) + 1; 2 divides 2 and 2. 1 is an extradivisor of 5 because 5 divides 2^(5+1) + 1 and (5-2)^(5+1) + 1; 5 divides 65 and 730. 3 is an extradivisor of 6 because 6 divides 3^(6+1) + 3 and (6-3)^(6+1) + 3; 6 divides 2190 and 2190.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Length@ Select[DeleteCases[Most@ Divisors@ n, d_ /; EvenQ@ d], Function[m, AnyTrue[Range[n - 1], Function[k, And[Divisible[k^(n + 1) + m, n], Divisible[(n - k)^(n + 1) + m, n]]]]]], {n, 90}] (* Version 10, eliminate "Length@" to list extradivisors, or *) Table[Count[Select[Most@ Divisors@ n, OddQ], ?(Total@ Boole@ Map[Function[k, And[Mod[k^(n + 1) + #, n] == 0, Mod[(n - k)^(n + 1) + #, n] == 0]], Range[1, n - 1, 2]] > 0 &)], {n, 3*10^3}] (* _Michael De Vlieger, Dec 07 2016, more efficient Jun 17 2020 *)
Extensions
a(42) and a(60) corrected by Jon E. Schoenfield, Dec 03 2016
Definition edited by N. J. A. Sloane, Jun 19 2020
Comments