cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371883 a(n) is the number of divisors d of n such that d^n mod n = d.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 10 2024

Keywords

Comments

1 <= a(n) < A000005(n) for n >= 2.

Examples

			a(1) = 0: 1 divides 1, but 1^1 mod 1 = 0 (not 1).
a(2) = 1: 1 divides 2, and 1^2 mod 2 = 1;
          2 divides 2, but 2^2 mod 2 = 0 (not 2).
a(6) = 2: 1 divides 6, and 1^6 mod 6 = 1;
          2 divides 6, but 2^6 mod 6 = 4 (not 2);
          3 divides 6, and 3^6 mod 6 = 3;
          6 divides 6, but 6^6 mod 6 = 0 (not 6).
		

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | d^n mod n eq d]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[#, n, n] == # &]; Array[a, 100] (* Amiram Eldar, Apr 11 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d^n % n == d); \\ Michel Marcus, Apr 20 2024
  • Python
    from sympy import divisors
    def a(n): return sum(1 for d in divisors(n)[:-1] if pow(d, n, n) == d)
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Apr 10 2024
    

A371513 a(n) is the smallest number m with n divisors d such that d^m mod m = d.

Original entry on oeis.org

1, 2, 6, 42, 30, 105, 910, 561, 1365, 5005, 5565, 11305, 36465, 140505, 239785, 41041, 682465, 873145, 185185, 418285, 1683969, 2113665, 5503785, 1242241, 6697405, 8549905, 31932901, 11996985, 31260405, 30534805, 47031061, 825265, 27265161, 32306365, 55336645, 21662641
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2024

Keywords

Examples

			a(0) = 1 with divisors {};
a(1) = 2 with divisor {1};
a(2) = 6 with divisors {1, 3};
a(3) = 42 with divisors {1, 7, 21};
a(4) = 30 with divisors {1, 6, 10, 15};
a(5) = 105 with divisors {1, 7, 15, 21, 35};
a(6) = 910 with divisors {1, 35, 65, 91, 130, 455};
a(7) = 561 with divisors {1, 3, 11, 17, 33, 51, 187};
a(8) = 1365 with divisors {1, 13, 21, 91, 105, 195, 273, 455};
a(9) = 5005 with divisors {1, 11, 55, 65, 77, 143, 385, 715, 1001};
a(10) = 5565 with divisors {1, 7, 15, 21, 35, 105, 265, 371, 1113, 1855};
a(11) = 11305 with divisors {1, 17, 19, 35, 85, 119, 323, 595, 665, 1615, 2261}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, PowerMod[#, n, n] == # &]; seq[max_] := Module[{t = Table[0, {max}], c = 0, n = 1, i}, While[c < max, i = f[n] + 1; If[i <= max && t[[i]] == 0, c++; t[[i]] = n]; n++]; t]; seq[18] (* Amiram Eldar, Apr 11 2024 *)
  • Python
    from sympy import divisors
    from itertools import count, islice
    def f(n, divs): return sum(1 for d in divs if pow(d, n, n) == d%n)
    def agen(verbose=False): # generator of terms
        adict, n = dict(), 0
        for k in count(1):
            divs = divisors(k)[1:]
            if len(divs) < n: continue
            v = f(k, divs)
            if v not in adict:
                adict[v] = k
                if verbose: print("FOUND", v, k)
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 15))) # Michael S. Branicky, Apr 10 2024, updated Apr 17 2024 after Jon E. Schoenfield

Extensions

a(12)-a(25) from Michael S. Branicky, Apr 10 2024
a(26)-a(35) from Jon E. Schoenfield, Apr 10 2024

A371884 Irregular triangle read by rows in which row n >= 2 lists the divisors d of n such that d^n mod n = d.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 1, 1, 7, 1, 5, 1, 1, 1, 9, 1, 1, 5, 1, 7, 1, 11, 1, 1, 1, 1, 13, 1, 1, 4, 1, 1, 6, 10, 15, 1, 1, 1, 11, 1, 17, 1, 1, 9, 1, 1, 19, 1, 13, 1, 1, 1, 7, 21, 1, 1, 1, 9, 1, 23, 1, 1, 16, 1, 1, 25, 1, 17, 1, 13, 1, 1, 27, 1, 11, 1, 8, 1, 19, 1, 29, 1, 1, 1, 1, 31, 1, 1, 1, 5, 13
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Apr 10 2024

Keywords

Examples

			Triangle begins:
    1;
    1;
    1;
    1;
    1, 3;
    1;
    1;
    1;
    1, 5;
    1;
    1, 4;
    1;
    1, 7;
    1, 5;
    1;
    1;
    1, 9;
    1;
    1, 5;
    1, 7;
    1, 11;
    1;
    1;
    1;
    1, 13;
    1;
    1, 4;
    1;
    1, 6, 10, 15;
    ...
		

Crossrefs

Programs

  • Magma
    [[d: d in Divisors(n) | d^n mod n eq d]: n in [2..65]];
  • Maple
    f:= proc(n) op(sort(convert(select(d -> d^n mod n = d, numtheory:-divisors(n)),list))) end proc:
    for n from 2 to 100 do f(n) od; # Robert Israel, May 11 2025
  • Mathematica
    row[n_] := Select[Divisors[n], PowerMod[#, n, n] == # &]; Array[row, 64, 2] // Flatten (* Amiram Eldar, Apr 11 2024 *)

A278921 Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1 and (q-p)^(q+1) + 1.

Original entry on oeis.org

10, 15, 65, 221, 493, 671, 1147, 1219, 3439, 5069, 12209, 14893, 20737, 24503, 30083, 49813, 61937, 77507, 91277, 97297, 100337, 102719, 109283, 109783, 113521, 132427, 144301, 178991, 204851, 244523, 245041, 246559, 257149, 258749, 312167, 339497, 397219, 433091, 434617, 461893, 465763
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

q is always a Pythagorean prime (A002144).
Semiprimes of the form p*q where p < q such that q divides p^(q+1) + k and (q-p)^(q+1) + k:
k = 1: (this sequence);
k = 2: 6, 33, 119, 247, 451, ...
k = 3: 14, 35, 91, 341, ...
k = 4: 39, 145, 371, ...
For every positive odd number q (whether prime or not), every integer p in 0..q, and every integer k, if q divides p^(q+1) + k, then it necessarily follows that q also divides (q-p)^(q+1) + k; thus, this sequence could be more simply defined as "Semiprimes of the form p*q where p < q such that q divides p^(q+1) + 1." - Jon E. Schoenfield, Dec 07 2016

Crossrefs

Programs

  • Mathematica
    Take[#, 41] &@ Union@ Flatten@ Table[Function[q, q Select[Prime@ Range@ n, Function[p, And[Divisible[p^(q + 1) + 1, q], Divisible[(q - p)^(q + 1) + 1, q]]]]]@ Prime@ n, {n, 600}] (* Michael De Vlieger, Dec 02 2016 *)
  • PARI
    list(lim)=my(v=List()); forprime(q=5,lim\2, if(q%4>2, next); forprime(p=2,min(lim\q,q-2), if(Mod(p,q)^(q+1)==-1 && Mod(q-p,q)^(q+1)==-1, listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Dec 02 2016

A279680 Definition: m < n is an extradivisor of n if for some positive k < n, m | n | k^(n+1) + m and n | (n-k)^(n+1) + m. This sequence gives the smallest number with n extradivisors.

Original entry on oeis.org

1, 2, 45, 105, 1365, 1305, 4305, 11445
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Dec 16 2016

Keywords

Examples

			a(0) = 1 with extradivisors {};
a(1) = 2 with extradivisor {1};
a(2) = 45 with extradivisors {5, 9};
a(3) = 105 with extradivisors {5, 21, 35};
a(4) = 1365 with extradivisors {35, 105, 195, 455};
a(5) = 1305 with extradivisors {5, 9, 29, 45, 261}.
		

Crossrefs

Programs

  • Mathematica
    First /@ Values@ KeySort@ PositionIndex@ Table[Count[DeleteCases[Most@ Divisors@ n, d_ /; EvenQ@ d], m_ /; Total@ Boole@ Map[Function[k, And[Mod[PowerMod[k, (n + 1), n] + m, n] == 0, Mod[PowerMod[(n - k), (n + 1), n] + m, n] == 0]], Range[n - 1]] > 0], {n, 1500}] (* Michael De Vlieger, Dec 17 2016, Version 10 *)

Extensions

a(3)-a(7) from Michael De Vlieger, Dec 07 2016
Definition edited by N. J. A. Sloane, Jun 19 2020
Showing 1-5 of 5 results.