A279205 Length of second run of 1's in binary representation of Catalan(n).
0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 4, 1, 3, 2, 1, 6, 1, 2, 1, 4, 7, 5, 2, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 1, 3, 3, 3, 3, 8, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1
Offset: 0
Examples
A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Q = {}; Num = 100; T = Table[IntegerDigits[CatalanNumber[n], 2], {n, 0, Num}]; For[i = 1, i <= Num, i++, c = 0; j = 1; While[T[[i]][[j]] == 1, j++]; While[T[[i]][[j]] == 0, j++]; c = j; While[T[[i]][[j]] == 1, j++]; c = j - c; AppendTo[Q, c] ]; Q (* Benedict W. J. Irwin, Dec 21 2016 *) Join[{0,0,0,1,0},Length[Split[IntegerDigits[#,2]][[3]]]&/@ CatalanNumber[ Range[5,100]]] (* Harvey P. Dale, Aug 20 2021 *)
Extensions
a(19) to a(99) from Benedict W. J. Irwin, Dec 21 2016
Comments