cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279032 a(n) is the greatest integer such that binomial(a(n),n)*2^(1 - binomial(n,2)) < 1.

Original entry on oeis.org

0, 1, 3, 6, 11, 17, 27, 42, 65, 100, 152, 231, 349, 527, 792, 1186, 1771, 2639, 3923, 5817, 8609, 12715, 18747, 27595, 40557, 59522, 87239, 127704, 186721, 272717, 397913, 580029, 844734, 1229199, 1787215, 2596587, 3769796, 5469375, 7930078, 11490820, 16640682
Offset: 1

Views

Author

Geoffrey Critzer, Dec 03 2016

Keywords

Comments

a(n) is a lower bound on the Ramsey number R(n,n). In other words, a(n) is less than the least integer N such that every graph on N vertices contains an n clique or a size n independent set.

References

  • D. B. West, Introduction to Graph Theory, Pearson, 2015, page 385.

Crossrefs

Cf. A212954.

Programs

  • Maple
    f:= proc(n) local k,r,B;
      k:= max(floor(n*2^(n/2)/(exp(1)*sqrt(2))),n);
      r:= 2^(binomial(n,2)-1);
      B:= binomial(k,n);
      if B < r then
        while B*(k+1)/(k+1-n) < r do k:= k+1; B:= B*k/(k-n) od;
      else
        while B*(k-1)/k > r do B:= B*(k-1)/k; k:= k-1 od;
        k:= k-1;
      fi;
      k
    end proc:
    map(f, [$1..40]); # Robert Israel, Dec 07 2016
  • Mathematica
    Table[Position[Table[Binomial[m, n] < 2^(Binomial[n, 2] - 1), {m, 1, 50000}],False][[1]] - 1, {n, 1, 25}] // Flatten

Formula

a(n) is asymptotic to n*2^(n/2)/(e*sqrt(2)).

Extensions

More terms from Robert Israel, Dec 07 2016