cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279033 Irregular triangular array: T(n,i) = number of strict partitions of n having crossover index k; see Comments.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 1, 9, 1, 10, 2, 13, 2, 14, 4, 18, 4, 19, 8, 24, 8, 25, 13, 32, 14, 33, 21, 42, 22, 43, 33, 54, 35, 55, 49, 69, 53, 70, 72, 87, 78, 88, 103, 1, 109, 112, 1, 110, 145, 1, 136, 160, 137, 200, 3, 168, 220, 2, 169, 275, 4, 206, 303, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2016

Keywords

Comments

Suppose that P = [p(1),p(2),...,p(k)] is a partition of n, where p(1) >= p(2) >= ... >= p(k). The crossover index of P is the least h such that p(1) + ... + p(h) > = n/2. Equivalently for k > 1, p(1) + ... + p(h) >= p(h+1) + ... + p(k). A strict partition is a partition into distinct parts. The n-th row sum is the number of strict partitions of n, A000009. Column 1 counts "non-squashing partitions", as in A088567.
First 32 rows (indexed by column 1):
1... 1
2... 1
3... 2
4... 2
5... 3
6... 4
7... 5
8... 6
9... 7 1
10... 9 1
11... 10 2
12... 13 2
13... 14 4
14... 18 4
15... 19 8
16... 24 8
17... 25 13
18... 32 14
19... 33 21
20... 42 22
21... 43 33
22... 54 35
23... 55 49
24... 69 53
25... 70 72
26... 87 78
27... 88 103 1
28... 109 112 1
29... 110 145 1
30... 136 160
31... 137 200 3
32... 168 220 3

Crossrefs

Programs

  • Mathematica
    p[n_] := p[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    t[n_, k_] := t[n, k] = p[n][[k]];
    q[n_, k_] := q[n, k] = Select[Range[50], Sum[t[n, k][[i]], {i, 1, #}] >= n/2 &, 1];
    u[n_] := u[n] = Flatten[Table[q[n, k], {k, 1, Length[p[n]]}]];
    c1[n_, k_] := c1[n, k] = Count[u[n], k];
    m[n_] := -1 + Min[Flatten[Position[Table[c1[n, k], {k, 1, n + 1}], 0]]]
    u = Table[c1[n, k], {n, 1, 50}, {k, 1, m[n]}]
    TableForm[u] (* A279033 array *)
    Flatten[u]   (* A279033 sequence *)