A279037 Decimal expansion of the total area of Ford circles.
8, 7, 2, 2, 8, 4, 0, 4, 1, 0, 6, 5, 6, 2, 7, 9, 7, 6, 1, 7, 5, 1, 9, 7, 5, 3, 2, 1, 7, 1, 2, 2, 5, 8, 7, 0, 6, 4, 0, 2, 7, 7, 7, 8, 0, 8, 8, 9, 9, 3, 3, 0, 3, 2, 5, 2, 0, 3, 5, 2, 1, 4, 7, 7, 8, 4, 9, 8, 5, 5, 8, 2, 7, 7, 6, 4, 5, 4, 2, 4, 3, 6, 1, 6, 6, 5, 4, 2, 2, 2, 8, 6, 2, 8, 9, 7, 9, 8, 5, 5, 9, 5, 9, 8, 8, 7, 8
Offset: 0
Examples
0.8722840410656279761751975321712258706402777808899330325203521...
Links
- L. R. Ford, Fractions, The American Mathematical Monthly, Vol. 45, No. 9 (1938), pp. 586-601.
- Wieslaw Marszalek, Circuits with Oscillatory Hierarchical Farey Sequences and Fractal Properties, Circuits Syst Signal Process, Vol. 31 (2012), pp. 1279-1296.
- Eric Weisstein's World of Mathematics, Ford Circle.
- Wikipedia, Ford circle.
Programs
-
Mathematica
RealDigits[Pi/4 * Zeta[3]/Zeta[4], 10, 107][[1]]
-
PARI
Pi/4 * zeta(3)/zeta(4) \\ Michel Marcus, Dec 04 2016
Formula
Equals (Pi/4) * Sum_{n >= 1} EulerPhi(n)/n^4.
Equals (Pi/4) * zeta(3)/zeta(4).
Equals 45*zeta(3) / (2*Pi^3).
Comments