A279040 Even numbers 2k such that the smallest prime p satisfying p+q=2k (q prime) is greater than or equal to sqrt(k).
4, 6, 8, 10, 12, 14, 16, 18, 24, 28, 30, 36, 38, 42, 48, 54, 60, 68, 80, 90, 96, 98, 122, 124, 126, 128, 148, 150, 190, 192, 208, 210, 212, 220, 222, 224, 302, 306, 308, 326, 330, 332, 346, 368, 398, 418, 458, 488, 518, 538, 540, 542, 556, 640, 692, 710, 796, 854, 908, 962, 968, 992, 1006
Offset: 1
Keywords
Examples
The smallest prime for 42 is 5 with 5 > sqrt(21), but not smaller than sqrt(42), and therefore 42 does not belong to A244408. The smallest prime for 38 is 7, and 7 >= sqrt(38), and therefore 38 also belongs to A244408.
Links
- Corinna Regina Böger, Table of n, a(n) for n = 1..230
- Tomás Oliveira e Silva, Goldbach conjecture verification
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
Select[Range[4, 1006, 2], Function[n, Select[#, PrimeQ@ Last@ # &][[1, 1]] >= Sqrt[n/2] &@ Map[{#, n - #} &, Prime@ Range@ PrimePi@ n]]] (* Michael De Vlieger, Dec 06 2016 *)
-
PARI
isok(n) = forprime(p=2, n, if (isprime(n-p), if (p >= sqrt(n/2), return(1), return(0)))); lista(nn) = forstep(n=2, nn, 2, if (isok(n), print1(n, ", "))) \\ Michel Marcus, Dec 04 2016
Comments