A279048 a(n) = 0 whenever n is a practical number (A005153) otherwise least powers of 2 that when multiplied by n becomes practical.
0, 0, 1, 0, 2, 0, 2, 0, 1, 1, 3, 0, 3, 1, 1, 0, 4, 0, 4, 0, 1, 2, 4, 0, 2, 2, 1, 0, 4, 0, 4, 0, 1, 3, 2, 0, 5, 3, 1, 0, 5, 0, 5, 1, 1, 3, 5, 0, 2, 1, 2, 1, 5, 0, 2, 0, 2, 3, 5, 0, 5, 3, 1, 0, 2, 0, 6, 2, 2, 1, 6, 0, 6, 4, 1, 2, 2, 0, 6, 0, 1, 4, 6, 0, 2, 4, 2, 0, 6, 0, 2, 2, 3, 4, 2, 0, 6, 1, 1, 0
Offset: 1
Keywords
Examples
a(11) = 3 because 11 * 2^3 = 88 is a practical number and 3 is the least power of 2 which when multiplied by 11 becomes practical.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- David Eppstein, Egyptian fractions with practical denominators, Nov 20, 2016
- Zhi-Wei Sun, A conjecture on unit fractions involving primes, preprint, 2015.
Crossrefs
Cf. A005153.
Programs
-
Mathematica
practicalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 ||(n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod * p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Table[(m = n; k = 0; While[! practicalQ[m], m = 2 * m; k++]; k), {n, 100}]
Comments