cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279048 a(n) = 0 whenever n is a practical number (A005153) otherwise least powers of 2 that when multiplied by n becomes practical.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 2, 0, 1, 1, 3, 0, 3, 1, 1, 0, 4, 0, 4, 0, 1, 2, 4, 0, 2, 2, 1, 0, 4, 0, 4, 0, 1, 3, 2, 0, 5, 3, 1, 0, 5, 0, 5, 1, 1, 3, 5, 0, 2, 1, 2, 1, 5, 0, 2, 0, 2, 3, 5, 0, 5, 3, 1, 0, 2, 0, 6, 2, 2, 1, 6, 0, 6, 4, 1, 2, 2, 0, 6, 0, 1, 4, 6, 0, 2, 4, 2, 0, 6, 0, 2, 2, 3, 4, 2, 0, 6, 1, 1, 0
Offset: 1

Views

Author

Frank M Jackson, Dec 04 2016

Keywords

Comments

A conjecture by Zhi-Wei Sun states that any rational number can be expressed as the sum of distinct unit fractions whose denominators are practical numbers. To prove this conjecture, David Eppstein (see link) used the fact that every natural number when repeatedly multiplied by 2 will eventually become practical.

Examples

			a(11) = 3 because 11 * 2^3 = 88 is a practical number and 3 is the least power of 2 which when multiplied by 11 becomes practical.
		

Crossrefs

Cf. A005153.

Programs

  • Mathematica
    practicalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 ||(n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod * p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Table[(m = n; k = 0; While[! practicalQ[m], m = 2 * m; k++]; k), {n, 100}]