A279080 Maximum starting value of X such that repeated replacement of X with X-ceiling(X/10) requires n steps to reach 0.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 58, 65, 73, 82, 92, 103, 115, 128, 143, 159, 177, 197, 219, 244, 272, 303, 337, 375, 417, 464, 516, 574, 638, 709, 788, 876, 974, 1083, 1204, 1338, 1487, 1653, 1837, 2042, 2269
Offset: 0
Keywords
Examples
13 -> 13-ceiling(13/10) = 11, 11 -> 11-ceiling(11/10) = 9, 9 -> 9-ceiling(9/10) = 8, 8 -> 8-ceiling(8/10) = 7, ... 1 -> 1-ceiling(1/10) = 0, so reaching 0 from 13 requires 11 steps; 14 -> 14-ceiling(14/10) = 12, 12 -> 12-ceiling(12/10) = 10, 10 -> 10-ceiling(10/10) = 9, 9 -> 9-ceiling(9/10) = 8, 8 -> 8-ceiling(8/10) = 7, ... 1 -> 1-ceiling(1/10) = 0, so reaching 0 from 14 (or more) requires 12 (or more) steps; thus, 13 is the largest starting value from which 0 can be reached in 11 steps, so a(11) = 13.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A278586.
See the following sequences for maximum starting value of X such that repeated replacement of X with X-ceiling(X/k) requires n steps to reach 0: A000225 (k=2), A006999 (k=3), A155167 (k=4, apparently; see Formula entry there), A279075 (k=5), A279076 (k=6), A279077 (k=7), A279078 (k=8), A279079 (k=9), (this sequence) (k=10). For each of these values of k, is the sequence the L-sieve transform of {k-1, 2k-1, 3k-1, ...}?
Programs
-
Magma
a:=[0]; aCurr:=0; for n in [1..57] do aCurr:=Floor(aCurr*10/9)+1; a[#a+1]:=aCurr; end for; a;
-
Maple
H:= proc(y) local u,v; v:= -y-1 mod 9+1; (10*y+v)/9 end proc: A:= Array(0..100): A[0]:= 0: for i from 1 to 100 do A[i]:= H(A[i-1]) od: convert(A,list); # Robert Israel, Jun 23 2020
-
Mathematica
With[{s = Array[-1 + Length@ NestWhileList[# - Ceiling[#/10] &, #, # > 0 &] &, 2400, 0]}, Array[-1 + Position[s, #][[-1, 1]] &, Max@ s, 0]] (* Michael De Vlieger, Jun 23 2020 *)
Formula
a(n) = floor(a(n-1)*10/9) + 1.
Comments