cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A279082 Smallest tetrahedral number with exactly n divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 0, 4, 10, 0, 20, 0, 56, 0, 0, 0, 84, 0, 0, 0, 120, 0, 2300, 0, 560, 0, 0, 0, 1140, 0, 0, 0, 349504, 0, 2362041, 0, 7770, 0, 0, 0, 3276, 0, 0, 0, 82160, 0, 0, 0, 4980598206895701865797099599990718771851543594988165352649, 19600, 0, 0, 7140, 0, 0, 0, 91625967616, 0, 155965244802415621, 0, 41664, 0, 0, 0, 2332880, 0, 0, 0, 59640, 0
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 06 2017, Jan 31 2021

Keywords

Comments

If the k-th tetrahedral number (i.e., A000292(k) = k*(k+1)*(k+2)/6) has exactly 42 divisors, it must be of the form p^6 * q^2 * r where p, q, and r are distinct primes, and it can be shown that p^6, q^2, and r must be k, (k+1)/2, and (k+2)/3, in some order. This results in six cases:
.
p^6 q^2 r resulting equations
======= ======= ======= ===========================
k (k+1)/2 (k+2)/3 p^6 = 2*q^2 - 1 = 3*r - 2
k (k+2)/3 (k+1)/2 p^6 = 3*q^2 - 2 = 2*r - 1
(k+1)/2 k (k+2)/3 2*p^6 = q^2 + 1 = 3*r - 1
(k+1)/2 (k+2)/3 k 2*p^6 = 3*q^2 - 1 = r + 1
(k+2)/3 k (k+1)/2 3*p^6 = q^2 + 2 = 2*r + 1
(k+2)/3 (k+1)/2 k 3*p^6 = 2*q^2 + 1 = r + 2
.
Cases 1 and 2 require p^6 + 1 = 2*q^2 and p^6 + 1 = 2*r, respectively, but both can be ruled out by factoring p^6 + 1 = (p^2 + 1)*(p^4 - p^2 + 1).
The four remaining cases require, respectively, the existence of a square of the form 2*p^6 - 1, (2*p^6 + 1)/3, 3*p^6 - 2, or (3*p^6 - 1)/2. An exhaustive search of the primes p up to 10^10 finds none that yields a square for any of those four forms, so if a(42) is not zero, then a(42) > (10^10)^18 / 6 = 1.666...*10^179.
Terms from a(66) through a(100): ?, 0, 375299968925696, 0, 0, 0, 215820, 0, 0, 0, 24019198012555264, 0, 0, 0, 88560, 0, 0, 0, 32016576, 0, 0, 0, 1431655424, 0, 2391444, 0, a(92), 0, 0, 0, 27720, 0, 0, 0, 40690000. (a(92), too large to show here, is p^22*((3*p^22 - 1)/2)*(3*p^22 - 2) where p = 10711.) [Updated by Max Alekseyev, Feb 03 2024]
Solutions to 2*p^6 = q^2 + 1 correspond to (some) integral points (X,Y) = (p^2, q) on the elliptic curve 2*X^3 = Y^2 + 1. All other cases for n = 42, as well as all the cases for n in {50, 70, 78, 98}, also correspond to elliptic curves, and I have computationally verified that all their integral points do not have the required form. Hence, a(42) = a(50) = a(70) = a(78) = a(98) = 0. - Max Alekseyev, Feb 03 2024

Crossrefs

Cf. A081978 (analogous sequence for triangular numbers).

Extensions

a(42)=a(50)=a(70)=a(78)=a(98)=0 from Max Alekseyev, Feb 03 2024

A279083 Numbers k such that there exists at least one tetrahedral number with exactly k divisors.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 06 2017

Keywords

Comments

The only odd terms are 1, 3, and 45 (which correspond to the three positive tetrahedral numbers that are square, i.e., 1, 4, and 19600). It is easy to show that no term larger than 6 is semiprime.
A tetrahedral number with exactly 42 divisors would have to be of the form p^6 * q^2 * r, with p, q, and r distinct primes; does such a tetrahedral number exist?
A tetrahedral number with exactly 50 divisors would have to be of the form p^4 * q^4 * r, with p, q, and r distinct primes; does such a tetrahedral number exist?
Additional terms < 200 include (but may not be limited to) 44, 45, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 192, 196

Crossrefs

Showing 1-2 of 2 results.