cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279097 Numbers k such that prime(k) divides primorial(j) + 1 for some j.

Original entry on oeis.org

1, 2, 4, 8, 11, 17, 18, 21, 25, 32, 34, 35, 39, 40, 42, 47, 48, 58, 59, 63, 65, 66, 67, 69, 90, 91, 97, 105, 110, 122, 140, 144, 151, 152, 162, 166, 168, 173, 174, 175, 177, 179, 180, 186, 205, 207, 208, 210, 211, 218, 221, 233, 243, 249, 256, 260, 261, 262
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 24 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).

Examples

			1 is in the sequence because primorial(0) + 1 = 1 + 1 = 2 is divisible by prime(1) = 2.
4 is in the sequence because primorial(2) + 1 = 2*3 + 1 = 7 is divisible by prime(4) = 7.
8 is in the sequence because primorial(7) + 1 = 2*3*5*7*11*13*17 + 1 = 510511 is divisible by prime(8) = 19.
59 is in the sequence because primorial(7) + 1 = 510511 is divisible by prime(59) = 277 (and primorial(17) + 1 = 1922760350154212639071 is divisible by prime(59) as well).
5 is not in the sequence because there is no number j such that primorial(j) + 1 is divisible by prime(5) = 11:
    primorial(1) + 1 = 2       + 1 =   3 == 3 (mod 11)
    primorial(2) + 1 = 2*3     + 1 =   7 == 7 (mod 11)
    primorial(3) + 1 = 2*3*5   + 1 =  31 == 9 (mod 11)
    primorial(4) + 1 = 2*3*5*7 + 1 = 211 == 2 (mod 11)
and primorial(j) + 1 = 2*...*11*... + 1  == 1 (mod 11) for all j >= 5.
		

Crossrefs

Programs

  • Mathematica
    np[1]=1; np[n_] := Block[{c=0, p=Prime[n], trg, x=1}, trg = p-1; Do[x = Mod[x Prime[k], p]; If[trg == x, c++], {k, n-1}]; c]; Select[Range[262], np[#] > 0 &] (* Giovanni Resta, Mar 29 2017 *)