A279100 a(n) = Sum_{k=0..n} ceiling(phi^k), where phi is the golden ratio (A001622).
1, 3, 6, 11, 18, 30, 48, 78, 125, 202, 325, 525, 847, 1369, 2212, 3577, 5784, 9356, 15134, 24484, 39611, 64088, 103691, 167771, 271453, 439215, 710658, 1149863, 1860510, 3010362, 4870860, 7881210, 12752057, 20633254, 33385297, 54018537, 87403819, 141422341, 228826144, 370248469, 599074596
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Golden Ratio
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,0,1).
Programs
-
Mathematica
Accumulate[Table[Ceiling[GoldenRatio^n], {n, 0, 40}]] LinearRecurrence[{2, 1, -3, 0, 1}, {1, 3, 6, 11, 18}, 41]
Formula
G.f.: (1 + x - x^2 - x^3 - x^4)/((1 - x)^2*(1 - 2*x^2 - x^3)).
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
a(n) = (10*n - 5*(-1)^n + 2^(1-n)*sqrt(5)*(5 + 3*sqrt(5))*(1 + sqrt(5))^n + sqrt(5)*2^(1-n)*(3*sqrt(5) - 5) *(1 - sqrt(5))^n - 35)/20.
a(n) ~ phi^(n+2).
Comments