cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279100 a(n) = Sum_{k=0..n} ceiling(phi^k), where phi is the golden ratio (A001622).

Original entry on oeis.org

1, 3, 6, 11, 18, 30, 48, 78, 125, 202, 325, 525, 847, 1369, 2212, 3577, 5784, 9356, 15134, 24484, 39611, 64088, 103691, 167771, 271453, 439215, 710658, 1149863, 1860510, 3010362, 4870860, 7881210, 12752057, 20633254, 33385297, 54018537, 87403819, 141422341, 228826144, 370248469, 599074596
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2016

Keywords

Comments

Partial sums of A169986.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Ceiling[GoldenRatio^n], {n, 0, 40}]]
    LinearRecurrence[{2, 1, -3, 0, 1}, {1, 3, 6, 11, 18}, 41]

Formula

G.f.: (1 + x - x^2 - x^3 - x^4)/((1 - x)^2*(1 - 2*x^2 - x^3)).
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
a(n) = (10*n - 5*(-1)^n + 2^(1-n)*sqrt(5)*(5 + 3*sqrt(5))*(1 + sqrt(5))^n + sqrt(5)*2^(1-n)*(3*sqrt(5) - 5) *(1 - sqrt(5))^n - 35)/20.
a(n) ~ phi^(n+2).