cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279111 Number of non-equivalent ways to place 2 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 4, 13, 37, 75, 147, 246, 406, 610, 910, 1275, 1779, 2373, 3157, 4060, 5212, 6516, 8136, 9945, 12145, 14575, 17479, 20658, 24402, 28470, 33202, 38311, 44191, 50505, 57705, 65400, 74104, 83368, 93772, 104805, 117117, 130131, 144571, 159790, 176590, 194250, 213654
Offset: 1

Views

Author

Heinrich Ludwig, Dec 06 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A061995.

Examples

			There are 4 non-equivalent ways to place 2 non-attacking kings on a 3 X 3 board:
   K.K   K..   K..   .K.
   ...   ..K   ...   ...
   ...   ...   ..K   .K.
		

Crossrefs

Cf. A061995, A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279115 (6 kings), A279116 (7 kings), A279117, A236679.

Programs

  • Mathematica
    Table[(n^4 - 2 n^2 - 4 n + Boole[OddQ@ n] (2 n^2 - 4 n + 7))/16, {n, 43}] (* or *)
    Rest@ CoefficientList[Series[x^3*(4 + 5 x + 3 x^2 - x^3 + x^4)/((1 - x)^5*(1 + x)^3), {x, 0, 43}], x] (* Michael De Vlieger, Dec 08 2016 *)
  • PARI
    concat(vector(2), Vec(x^3*(4 + 5*x + 3*x^2 - x^3 + x^4) / ((1 - x)^5*(1 + x)^3) + O(x^60))) \\ Colin Barker, Dec 07 2016

Formula

a(n) = (n^4 - 2*n^2 - 4*n + IF(MOD(n, 2) = 1, 2*n^2 - 4*n + 7))/16.
a(n) = (2*n^4 - 2*n^2 - 12*n + 7 - (2*n^2 - 4*n + 7)*(-1)^n)/32. - Bruno Berselli, Dec 07 2016
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
From Colin Barker, Dec 07 2016: (Start)
a(n) = n*(n - 2)*(n^2 + 2*n + 2)/16 for n even.
a(n) = (n - 1)*(n^3 + n^2 + n - 7)/16 for n odd.
G.f.: x^3*(4 + 5*x + 3*x^2 - x^3 + x^4) / ((1 - x)^5*(1 + x)^3).
(End)