cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279114 Number of non-equivalent ways to place 5 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 273, 5335, 50021, 291171, 1263125, 4434783, 13355477, 35672426, 86686721, 194886975, 410820269, 819819261, 1561128613, 2853802623, 5033838173, 8602315716, 14291999441, 23150803815, 36654054741, 56841404455, 86496828245, 129363299967, 190419751685, 276205278030
Offset: 1

Views

Author

Heinrich Ludwig, Dec 08 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A061998.

Examples

			There are 273 non-equivalent ways to place 5 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   ..K..
   .....
   K...K
		

Crossrefs

Cf. A061998, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279115 (6 kings), A279116 (7 kings), A279117, A236679.

Programs

  • Magma
    [0,0,0] cat [(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960 : n in [4..30]]; // Wesley Ivan Hurt, Dec 08 2016
  • Maple
    A279114:=n->(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960: 0, 0, 0, seq(A279114(n), n=4..30); # Wesley Ivan Hurt, Dec 08 2016
  • Mathematica
    Join[{0, 0, 0}, Table[(n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2 - (-1)^n/2)*(52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960, {n, 4, 30}]] (* Wesley Ivan Hurt, Dec 08 2016 *)
  • PARI
    concat(vector(4), Vec(x^5*(273 +3970*x +24438*x^2 +67866*x^3 +103134*x^4 +66494*x^5 -1418*x^6 -29015*x^7 -4247*x^8 +10650*x^9 +2718*x^10 -2696*x^11 -672*x^12 +382*x^13 +62*x^14 -19*x^15) / ((1 -x)^11*(1 +x)^6) + O(x^30))) \\ Colin Barker, Dec 08 2016
    

Formula

a(n) = (n^10 - 90*n^8 + 120*n^7 + 3115*n^6 - 7748*n^5 - 46050*n^4 + 173140*n^3 + 158584*n^2 - 1255952*n + 1252800 + (1/2-(-1)^n/2) * (52*n^5 - 305*n^4 + 180*n^3 + 320*n^2 + 3488*n - 375))/960 for n >= 4.
a(n) = 5*a(n-1) - 4*a(n-2) - 20*a(n-3) + 40*a(n-4) + 16*a(n-5) - 100*a(n-6) + 44*a(n-7) + 110*a(n-8) - 110*a(n-9) - 44*a(n-10) + 100*a(n-11) - 16*a(n-12) - 40*a(n-13) + 20*a(n-14) + 4*a(n-15) - 5*a(n-16) + a(n-17) for n >= 21.
G.f.: x^5*(273 +3970*x +24438*x^2 +67866*x^3 +103134*x^4 +66494*x^5 -1418*x^6 -29015*x^7 -4247*x^8 +10650*x^9 +2718*x^10 -2696*x^11 -672*x^12 +382*x^13 +62*x^14 -19*x^15) / ((1 -x)^11*(1 +x)^6). - Colin Barker, Dec 08 2016