A279134 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 1, 1, 0, 0, 0, 3, 9, 9, 3, 3, 34, 66, 34, 3, 9, 87, 256, 256, 87, 9, 15, 194, 820, 1324, 820, 194, 15, 31, 400, 2551, 6396, 6396, 2551, 400, 31, 57, 790, 7491, 30074, 47452, 30074, 7491, 790, 57, 108, 1511, 21131, 129264, 316516, 316516, 129264, 21131, 1511, 108
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..1. .0..0..1..0 ..1..0..1..1. .1..1..1..0. .0..0..1..0. .1..0..1..0. .1..1..0..1 ..1..1..0..0. .0..0..0..1. .0..1..0..0. .0..1..1..0. .1..0..1..0 ..1..0..1..1. .1..0..1..0. .1..0..1..0. .0..1..0..0. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Column 1 is A105423(n-2).
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
k=2: [order 8] for n>9
k=3: [order 11] for n>17
k=4: [order 43] for n>50
k=5: [order 88] for n>108
Comments