cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279135 Coefficients of the '5th-order' mock theta function Phi(q) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 10, 12, 12, 14, 15, 17, 18, 20, 21, 25, 26, 29, 31, 35, 36, 41, 43, 48, 51, 56, 59, 66, 70, 76, 81, 89, 94, 103, 109, 119, 126, 137, 144, 158, 167, 180, 191, 207, 218, 236, 250, 269, 285, 306, 323
Offset: 0

Views

Author

Michael Somos, Dec 06 2016

Keywords

Comments

In Ramanujan's lost notebook the generating function is denoted by phi(q) on pages 18 and 20, however on page 20 there is a minus one first term.

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20, 23

Crossrefs

Cf. A053262. Essentially the same as A053266.
Cf. A259910.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(5 k^2) / (QPochhammer[ x, x^5, k + 1] QPochhammer[ x^4, x^5, k]) // FunctionExpand, {k, 0, Sqrt[n/5]}], {x, 0, n}]];
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[1 + 24 n/5]}, SeriesCoefficient[ Sum[ (-1)^k x^(5 k (3 k + 1)/2) / (1 - x^(5 k + 1)), {k, Quotient[m + 1, -6], Quotient[m - 1, 6]}] / QPochhammer[ x^5], {x, 0, n}]]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n\5), x^(5*k^2) / prod(i=1, 5*k+1, 1 - if( i%5==1 || i%5==4, x^i), 1 + x * O(x^(n - 5*k^2)))), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = sqrtint(1 + 24*n\5); A = x * O(x^n); polcoeff( sum(k=(m + 1)\-6, (m - 1)\6, (-1)^k * x^(5*k*(3*k + 1)/2) / (1 - x^(5*k + 1)), A) / eta(x^5 + A), n))};

Formula

G.f.: Sum_{k>=0} x^(5*k^2) / ((1 - x) * (1 - x^4) * (1 - x^6) * (1 - x^9)...(1 - x^(5*k+1))).
3*a(n) = A053262(n) + A259910(n) unless n=0. [Ramanujan, p. 23, equation 6]
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(3/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019