A279158 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 0, 2, 2, 4, 4, 2, 5, 12, 20, 12, 5, 8, 30, 72, 72, 30, 8, 15, 72, 255, 428, 255, 72, 15, 26, 162, 874, 2294, 2294, 874, 162, 26, 46, 356, 2903, 11932, 20104, 11932, 2903, 356, 46, 80, 766, 9336, 60304, 166552, 166552, 60304, 9336, 766, 80, 139, 1616, 29578
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..0..1. .0..1..0..0 ..0..0..1..0. .0..0..1..0. .1..0..1..1. .0..1..0..1. .0..0..1..1 ..1..1..0..1. .1..1..0..1. .1..0..0..0. .1..1..0..1. .1..1..0..0 ..0..0..1..0. .0..1..0..1. .1..0..1..1. .0..0..0..1. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Column 1 is A006367(n-1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 4*a(n-1) -5*a(n-2) +6*a(n-3) -12*a(n-4) +8*a(n-5) -4*a(n-6) +8*a(n-7)
k=3: [order 22] for n>23
k=4: [order 56] for n>57
Comments