A279161 Define P = e^gamma*loglog(n) and Q = 3/loglog(n), where gamma is Euler's constant A001620. Then a(n) = phi(n) - ceiling(n/(P + Q)), where phi(n) is Euler's function A000010.
1, 1, 3, 1, 4, 2, 4, 2, 7, 1, 9, 3, 4, 4, 12, 2, 13, 3, 7, 5, 17, 2, 14, 6, 12, 5, 21, 1, 23, 9, 12, 8, 16, 4, 27, 9, 15, 7, 31, 2, 32, 10, 14, 12, 35, 5, 31, 9, 20, 12, 40, 6, 28, 11, 23, 15, 45, 3, 46, 16, 22, 18, 34, 5, 51, 17, 29, 8, 54, 8, 56, 20, 23, 19
Offset: 3
Keywords
References
- E. Landau, Handbuch der Lehre yon der Verteilung der Primzahlen, 2 vols., Leipzig, Teubner, 1909. Reprinted in 1953 by Chelsea Publishing Co., New York.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 3..5002
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), pp. 64-94.
Programs
-
PARI
a(n)=my(LL=log(log(n)),P=LL*exp(Euler),Q=3/LL); eulerphi(n) - ceil(n/(P+Q)) \\ Charles R Greathouse IV, Dec 07 2016
Extensions
More terms from Peter J. C. Moses, Dec 07 2016
Comments