A279168 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 1, 1, 0, 0, 0, 3, 0, 0, 3, 3, 8, 16, 8, 3, 9, 24, 117, 117, 24, 9, 15, 88, 483, 864, 483, 88, 15, 31, 284, 2001, 5628, 5628, 2001, 284, 31, 57, 772, 7709, 34764, 57248, 34764, 7709, 772, 57, 108, 2000, 28139, 203226, 557163, 557163, 203226, 28139, 2000, 108, 199
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1 ..1..0..0..0. .1..1..0..1. .0..1..0..0. .1..0..0..1. .0..1..1..1 ..0..0..1..0. .0..0..1..1. .0..1..1..0. .1..0..1..1. .0..1..0..0 ..1..0..1..1. .1..0..1..0. .1..0..1..0. .1..0..0..0. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Crossrefs
Column 1 is A105423(n-2).
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
k=2: [order 11]
k=3: [order 33] for n>36
k=4: [order 84] for n>88
Comments