cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279186 Maximal entry in n-th row of A279185.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6, 3, 4
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2016

Keywords

Comments

See A256608 for LCM of entries in row n.
From Robert Israel, Dec 15 2016: (Start)
If m and k are coprime then a(m*k) = lcm(a(m), a(k)).
If n is in A061345 and r = A053575(n) is in A167791, then a(n) = A000010(r). (End)

Crossrefs

Start is same as A256607 and A256608. However, all three are different.

Programs

  • Maple
    A279186 := proc(n)
        local a,k ;
        a := 1 ;
        for k from 0 to n-1 do
            a := max(a,A279185(k,n)) ;
        end do:
        a ;
    end proc : # R. J. Mathar, Dec 15 2016
  • Mathematica
    T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
    a[n_] := Table[T[n, k], {k, 0, n - 1}] // Max;
    Array[a, 90] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
  • PARI
    { A279186(n) = my(r=lcm(znstar(n)[2])); znorder(Mod(2,r>>valuation(r,2))); } \\ Max Alekseyev, Feb 02 2024

Formula

a(n) = A007733(A002322(n)). - Max Alekseyev, Feb 02 2024