cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279189 Primes p such that L(p^2) = (p-1)*L(p), where L(i) = A279186(i).

Original entry on oeis.org

2, 3, 5, 29, 179, 293, 317, 467, 509, 659, 797, 1427, 1949, 2213, 2339, 2579, 2909, 3677, 4157, 4229, 4253, 4349, 5309, 5573, 5693, 5843, 5939, 6173, 6269, 6653, 6899, 6947, 7043, 7517, 7589, 8387, 8573, 8819, 9059, 9533, 10067, 10163, 10259, 10589, 11069, 11549, 11939, 13763, 14627, 15443
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2016

Keywords

Comments

Also, union of {2} and the primes p from A001122 such that gcd(p-1,A007733(p-1)) = 1. - Max Alekseyev, Feb 02 2024

Crossrefs

Excluding a(1)=2, forms a subsequence of A001122.

Programs

  • Mathematica
    T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
    L[n_] := L[n] = Table[T[n, k], {k, 0, n - 1}] // Max;
    For[p = 2, p < 1000, p = NextPrime[p], If[L[p^2] == (p-1) L[p], Print[p]]] (* Jean-François Alcover, Oct 07 2018, after Robert Israel in A279186 *)

Extensions

a(8)-a(11) from Jean-François Alcover, Oct 07 2018
Terms a(12) onward from Max Alekseyev, Feb 02 2024