cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279217 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 8, 30, 108, 357, 1205, 3838, 12083, 36896, 110828, 326281, 946086, 2700026, 7602642, 21128513, 58028309, 157588912, 423534324, 1127102360, 2971764946, 7766890826, 20131080168, 51766513279, 132117237595, 334770353022, 842462217948, 2106183375971, 5232414548275, 12920429411759, 31719180847831
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(4*k-1)/6).
a(n) ~ exp(-Zeta'(-1)/6 - Zeta(3)/(8*Pi^2) - Pi^16/(199065600000*Zeta(5)^3) - Pi^8*Zeta(3)/(6912000*Zeta(5)^2) - Zeta(3)^2/(1440*Zeta(5)) + 2*Zeta'(-3)/3 + (Pi^12/(172800000*2^(4/5)*Zeta(5)^(11/5)) + Pi^4*Zeta(3)/(7200*2^(4/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8/(288000*2^(3/5)*Zeta(5)^(7/5)) - Zeta(3)/(12*2^(3/5)*Zeta(5)^(2/5))) * n^(2/5) + (Pi^4/(360*2^(2/5)*Zeta(5)^(3/5))) * n^(3/5) + 5*(Zeta(5)/2)^(1/5)/2 * n^(4/5)) * Zeta(5)^(173/1800) / (2^(26/225) * sqrt(5*Pi) * n^(1073/1800)). - Vaclav Kotesovec, Dec 08 2016