A279215
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k+1)/6).
Original entry on oeis.org
1, 1, 6, 20, 65, 190, 571, 1616, 4555, 12439, 33515, 88517, 230738, 592321, 1502384, 3763946, 9328899, 22880511, 55585077, 133806273, 319373068, 756124040, 1776497540, 4143489680, 9597505006, 22083821765, 50494638926, 114758996621, 259303832735, 582655202940, 1302234303910, 2895530963661, 6406348746390
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index to sequences related to pyramidal numbers
-
nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
A279216
Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).
Original entry on oeis.org
1, 1, 7, 25, 86, 269, 862, 2606, 7812, 22704, 64989, 182356, 504414, 1373694, 3693367, 9804435, 25733084, 66808578, 171719539, 437183839, 1103143657, 2760037810, 6850400668, 16873338215, 41260373472, 100196920196, 241712863504, 579416535973, 1380517695672, 3270075208145, 7702580246941
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
- Index to sequences related to pyramidal numbers
-
nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
A279217
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(4*k-1)/6).
Original entry on oeis.org
1, 1, 8, 30, 108, 357, 1205, 3838, 12083, 36896, 110828, 326281, 946086, 2700026, 7602642, 21128513, 58028309, 157588912, 423534324, 1127102360, 2971764946, 7766890826, 20131080168, 51766513279, 132117237595, 334770353022, 842462217948, 2106183375971, 5232414548275, 12920429411759, 31719180847831
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
- Index to sequences related to pyramidal numbers
-
nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
A279219
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k-1)/2).
Original entry on oeis.org
1, 1, 10, 40, 155, 560, 2051, 7080, 24064, 79370, 257067, 815593, 2545201, 7812699, 23639459, 70551216, 207932549, 605611061, 1744513262, 4973116444, 14038641287, 39263308551, 108849552289, 299248060986, 816159923366, 2209102273109, 5936069692320, 15840122529455, 41987363787469, 110584436073149
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index to sequences related to pyramidal numbers
-
nmax=29; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
A317020
Expansion of Product_{k>=1} 1/(1 - x^k)^((5*k-1)*binomial(k+2,3)/4).
Original entry on oeis.org
1, 1, 10, 45, 185, 710, 2766, 10270, 37444, 132765, 462327, 1579563, 5311361, 17584084, 57414594, 185032557, 589183035, 1854974066, 5778722817, 17823440534, 54458411332, 164917654587, 495219323844, 1475145786950, 4360576440676, 12796007418881, 37287660835368, 107930276062786
Offset: 0
-
a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2,3)/4),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
-
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]
A318121
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).
Original entry on oeis.org
1, 1, 4, 15, 65, 269, 1205, 5325, 24064, 108849, 496790, 2275492, 10470720, 48325984, 223721404, 1038182441, 4828274432, 22497132116, 105001996350, 490816448220, 2297356108318, 10766317435860, 50511178395306, 237217429972191, 1115084064063866, 5246116796164594
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
Showing 1-6 of 6 results.
Comments