A279229 Odd orders n for which a complete dihedral Hamiltonian cycle system of the cocktail graph exists.
21, 33, 45, 57, 65, 69, 77, 85, 93, 105, 117, 123, 129, 133, 141, 145, 153, 161, 165, 177, 185, 189, 201, 209, 213, 217, 219, 221, 225, 237, 245, 249, 253, 261, 265, 267, 273, 285, 287, 291, 297, 301, 305, 309, 321, 325, 329, 333, 341, 345, 357
Offset: 1
Links
- M. Buratti and F. Merola, Dihedral Hamiltonian cycle systems of the Cocktail Party Graph, J. Combin. Des. 21 (1) (2013) 1-23, Section 3.
Programs
-
Maple
isA000961 := proc(n) local pf; if n = 1 then return true; end if; pf := ifactors(n)[2] ; if nops(pf) > 1 then false; else true; end if ; end proc: A023506 := proc(p) padic[ordp](p-1,2) ; end proc: isA279229 := proc(n) local ct2,p,l ; if type(n,'even') then false; elif isA000961(n) then false; else ct2 := 0 ; for pf in ifactors(n)[2] do l := A023506(op(1,pf)) ; ct2 := ct2+l*op(2,pf) ; end do: type(ct2,'even') ; end if; end proc: for n from 2 to 2000 do if isA279229(n) then printf("%d,",n); end if; end do:
-
Mathematica
A023506[p_] := IntegerExponent[p - 1, 2]; isA279229[n_] := Module[{ct2, l}, Which[EvenQ[n], False, PrimePowerQ[n], False, True, ct2 = 0; Do[l = A023506[pf[[1]]]; ct2 = ct2 + l*pf[[2]], {pf, FactorInteger[n]}]; EvenQ[ct2]]]; Select[Range[2, 400], isA279229] (* Jean-François Alcover, Oct 28 2023, after R. J. Mathar's program *)