A279241 Let f(n) = 4*n^2 + 2*n + 41. The values |f(n)| are primes for all n in the range -20 to 19 (but not for n=-21 or 20). The sequence lists this maximal run of primes in the order in which they appear.
1601, 1447, 1301, 1163, 1033, 911, 797, 691, 593, 503, 421, 347, 281, 223, 173, 131, 97, 71, 53, 43, 41, 47, 61, 83, 113, 151, 197, 251, 313, 383, 461, 547, 641, 743, 853, 971, 1097, 1231, 1373, 1523
Offset: 1
Programs
-
Maple
s1:=[]; f:=n->4*n^2+2*n+41; for n from -20 to 19 do if isprime(abs(f(n))) then s1:=[op(s1), abs(f(n))]; fi; od: s1; # From N. J. A. Sloane, Dec 17 2016. This does nothing more than produce the primes mentioned in the definition
Extensions
Edited by N. J. A. Sloane, Dec 17 2016
Comments