A279260 Numbers which are cyclops palindromic in their binary reflected Gray code representation.
0, 6, 18, 90, 330, 1386, 5418, 21930, 87210, 349866, 1397418, 5593770, 22366890, 89483946, 357903018, 1431677610, 5726579370, 22906579626, 91625794218, 366504225450, 1466014804650, 5864063412906, 23456245263018, 93824997829290, 375299957762730, 1501199898159786, 6004799458421418
Offset: 0
Examples
90 is in the sequence because the binary reflected Gray code representation of 90 is '1110111' which is a cyclops palindromic binary number.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Indranil Ghosh, Proof of 6|{(-2*(1+((-2)^n)-(2^(2*n+1))))/3}
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, (2015)
Programs
-
PARI
a(n)=(-2*(1+((-2)^n)-(2^(2*n+1))))/3 \\ Charles R Greathouse IV, Jun 29 2018
-
Python
def a(n): return (-2*(1+((-2)**n)-(2**(2*n+1))))/3
Formula
a(n) = (-2*(1+((-2)^n)-(2^(2*n+1))))/3.
Comments