cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279278 Expansion of Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct tetrahedral numbers (A000292).

Examples

			a(35) = 2 because we have [35] and [20, 10, 4, 1].
		

Crossrefs

Cf. A000292, A007294, A024940, A068980, A350205 (positions of records).

Programs

  • Mathematica
    nmax=120; CoefficientList[Series[Product[1 + x^(k (k + 1) (k + 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(k+1)*(k+2)/6)).