cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279284 Self-composition of the pentagonal numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000326.

Original entry on oeis.org

0, 1, 10, 74, 469, 2662, 14115, 71360, 348143, 1652200, 7669883, 34969286, 157060011, 696514465, 3055404733, 13277356490, 57222978070, 244831062184, 1040760406476, 4398642943496, 18493603597214, 77388169532299, 322451025667910, 1338291853544522, 5534486308363461, 22812231761335189, 93741611639348947, 384122032722040412
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x)^3 (1 + 2 x) (1 - x + 7 x^2 - x^3)/(1 - 4 x + x^2 - x^3)^3, {x, 0, 25}], x]
    LinearRecurrence[{12, -51, 91, -75, 66, -28, 15, -3, 1}, {0, 1, 10, 74, 469, 2662, 14115, 71360, 348143}, 26]

Formula

G.f.: x*(1 - x)^3*(1 + 2*x)*(1 - x + 7*x^2 - x^3)/(1 - 4*x + x^2 - x^3)^3.
a(n) = 12*a(n-1) - 51*a(n-2) + 91*a(n-3) - 75*a(n-4) + 66*a(n-5) - 28*a(n-6) + 15*a(n-7) - 3*a(n-8) + a(n-9).