A279313 Period 14 zigzag sequence: repeat [0,1,2,3,4,5,6,7,6,5,4,3,2,1].
0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1,1).
Crossrefs
Programs
-
Magma
&cat[[0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]: n in [0..10]];
-
Maple
A279313:=n->[0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1][(n mod 14)+1]: seq(A279313(n), n=0..200);
-
Mathematica
CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 - x + x^7 - x^8), {x, 0, 100}], x]
-
PARI
a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,-1,0,0,0,0,0,1]^n*[0;1;2;3;4;5;6;7])[1,1] \\ Charles R Greathouse IV, Dec 12 2016
Formula
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 - x + x^7 - x^8).
a(n) = a(n-1) - a(n-7) + a(n-8) for n > 7.
a(n) = abs(n - 14*round(n/14)).
a(n) = Sum_{i=1..n} (-1)^floor((i-1)/7).
a(n) = a(n-14) for n >= 14. - Wesley Ivan Hurt, Sep 07 2022
Comments