A279315 Count the primes appearing in each interval [p,q] where (p,q) is a Goldbach partition of 2n such that all primes from p to q (inclusive) appear as a part in some Goldbach partition of p+q = 2n, and then add the results.
0, 0, 1, 2, 4, 2, 1, 0, 6, 0, 1, 12, 1, 0, 12, 0, 1, 6, 1, 0, 2, 0, 1, 0, 0, 2, 0, 0, 1, 30, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 12, 1, 0, 2, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 1, 6, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 1, 0, 6, 0, 1, 0, 0, 2, 0
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A279315:=n->add( (pi(i)-pi(i-1)) * (pi(2*n-i)-pi(2*n-i-1)) * (pi(2*n-i)-pi(i-1)) * (product(1-abs((pi(k)-pi(k-1))-(pi(2*n-k)-pi(2*n-k-1))), k=i..n)), i=3..n): seq(A279315(n), n=1..100);
-
Mathematica
f[n_] := Sum[ Boole[PrimeQ[i]] Boole[PrimeQ[ 2n -i]] (PrimePi[ 2n -i] - PrimePi[i -1]) Product[(1 - Abs[Boole[PrimeQ[k]] - Boole[PrimeQ[ 2n -k]]]), {k, i, n}], {i, 3, n}]; Array[f, 80] (* Robert G. Wilson v, Dec 15 2016 *)
Formula
a(n) = Sum_{i=3..n} c(i) * c(2*n-i) * (pi(2*n-i)-pi(i-1)) * (Product_{k=i..n} (1-abs(c(k)-c(2*n-k)))), where pi is the prime counting function (A000720), and c is the prime characteristic (A010051).
From Wesley Ivan Hurt, Dec 17 2016: (Start)
a(n) <= A279536(n). (End)