cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279320 Expansion of chi(-x^4) * psi(x^6) / phi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 45, 74, 119, 188, 291, 442, 664, 982, 1435, 2076, 2972, 4214, 5929, 8272, 11457, 15762, 21543, 29264, 39532, 53110, 70988, 94430, 125033, 164826, 216388, 282940, 368552, 478326, 618621, 797376, 1024485, 1312184, 1675657, 2133664, 2709307
Offset: 0

Views

Author

Michael Somos, Dec 09 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 45*x^6 + 74*x^7 + ...
G.f. = q^11 + 2*q^23 + 4*q^35 + 8*q^47 + 15*q^59 + 26*q^71 + 45*q^83 + ...
		

Crossrefs

Cf. A131945.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(-3/4)/2 QPochhammer[ -x^4, x^4] EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 4, 0, x], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 2^(-3/2)/x EllipticTheta[ 2, Pi/4, x] EllipticTheta[ 2, 0, x^3] / QPochhammer[ x]^2, {x, 0, n}];
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(4*k)) * (1+x^(6*k)) * (1-x^(12*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of f(-x^2, -x^10) * f(-x^8) / f(-x)^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-11/12) * eta(q^2) * eta(q^8) * eta(q^12)^2 / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 24 sequence [ 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 0, ...].
a(n) ~ exp(sqrt(13*n/3)*Pi/2) * 13^(1/4) / (16*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Dec 10 2016