cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279363 Sum of 4th powers of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 17, 1, 98, 1, 273, 82, 642, 1, 1650, 1, 2418, 707, 4369, 1, 7955, 1, 10898, 2483, 14658, 1, 26482, 626, 28578, 6643, 41090, 1, 62644, 1, 69905, 14723, 83538, 3027, 133923, 1, 130338, 28643, 174994, 1, 236692, 1, 249170, 57893, 279858, 1, 423794, 2402, 401267, 83603, 485810, 1, 644372, 15267, 659842, 130403, 707298, 1, 1053636
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Examples

			a(10) = 1^4 + 2^4 + 5^4 = 642, because 10 has 3 proper divisors {1,2,5}.
a(11) = 1^4 = 1, because 11 has 1 proper divisor {1}.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[4, n] - n^4, {n, 60}]
  • PARI
    for(n=1, 60, print1(sigma(n, 4) - n^4,", ")) \\ Indranil Ghosh, Mar 18 2017
    
  • Python
    from sympy.ntheory import divisor_sigma
    print([divisor_sigma(n,4) - n**4 for n in range(1,61)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = 1 if n is prime.
a(p^k) = (p^(4*k) - 1)/(p^4 - 1) when p is prime.
Dirichlet g.f.: zeta(s-4)*(zeta(s) - 1).
a(n) = A001159(n) - A000583(n).
G.f.: -x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5 + Sum_{k>=1} k^4 x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 18 2017
Sum_{k=1..n} a(k) ~ (Zeta(5) - 1)*n^5 / 5. - Vaclav Kotesovec, Feb 02 2019