cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279368 Expansion of Product_{k>=1} (1+3*x^(k^2)).

Original entry on oeis.org

1, 3, 0, 0, 3, 9, 0, 0, 0, 3, 9, 0, 0, 9, 27, 0, 3, 9, 0, 0, 9, 27, 0, 0, 0, 12, 36, 0, 0, 36, 108, 0, 0, 0, 9, 27, 3, 9, 27, 81, 9, 36, 27, 0, 0, 36, 108, 0, 0, 30, 117, 81, 9, 36, 108, 243, 27, 81, 9, 27, 0, 36, 135, 81, 3, 126, 351, 0, 9, 54, 108, 81, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 10 2016

Keywords

Comments

In general, if m > 0 and g.f. = Product_{k>=1} (1 + m*x^(k^2)), then a(n) ~ exp(3 * 2^(-4/3) * Pi^(1/3) * c^(2/3) * n^(1/3)) * c^(1/3) / (2^(2/3) * Pi^(1/3) * sqrt(3*(m+1)) * n^(5/6)), where c = -PolyLog(3/2, -m). - Vaclav Kotesovec, Dec 12 2016

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1+3*x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; nn = Floor[Sqrt[nmax]]+1; poly = ConstantArray[0, nn^2 + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 0; Do[Do[poly[[j + 1]] += 3*poly[[j - k^2 + 1]], {j, nn^2, k^2, -1}];, {k, 2, nn}]; Take[poly, nmax+1]

Formula

a(n) ~ c^(1/3) * exp(3 * 2^(-4/3) * c^(2/3) * Pi^(1/3) * n^(1/3)) / (2^(5/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where c = -PolyLog(3/2, -3) = 1.679089730504828... . - Vaclav Kotesovec, Dec 12 2016