cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276516 Expansion of Product_{k>=1} (1-x^(k^2)).

Original entry on oeis.org

1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, -1, 0, 0, -1, 1, -1, 2, -1, 0, 1, -2, 0, 1, 0, 1, 0, -1, 0, -2, 2, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 12 2016

Keywords

Comments

The difference between the number of partitions of n into an even number of distinct squares and the number of partitions of n into an odd number of distinct squares. - Ilya Gutkovskiy, Jan 15 2018

Crossrefs

Programs

  • Mathematica
    nn = 15; CoefficientList[Series[Product[(1-x^(k^2)), {k, nn}], {x, 0, nn^2}], x]
    nmax = 200; nn = Floor[Sqrt[nmax]]+1; poly = ConstantArray[0, nn^2 + 1]; poly[[1]] = 1; poly[[2]] = -1; poly[[3]] = 0; Do[Do[poly[[j + 1]] -= poly[[j - k^2 + 1]], {j, nn^2, k^2, -1}];, {k, 2, nn}]; Take[poly, nmax+1]

Formula

a(n) = Sum_{k>=0} (-1)^k * A341040(n,k). - Alois P. Heinz, Feb 03 2021
a(n) = A033461(n) - 2*A339367(n). - R. J. Mathar, Jul 29 2025

A279360 Expansion of Product_{k>=1} (1+2*x^(k^2)).

Original entry on oeis.org

1, 2, 0, 0, 2, 4, 0, 0, 0, 2, 4, 0, 0, 4, 8, 0, 2, 4, 0, 0, 4, 8, 0, 0, 0, 6, 12, 0, 0, 12, 24, 0, 0, 0, 4, 8, 2, 4, 8, 16, 4, 12, 8, 0, 0, 12, 24, 0, 0, 10, 28, 16, 4, 12, 24, 32, 8, 16, 4, 8, 0, 12, 32, 16, 2, 32, 56, 0, 4, 16, 24, 16, 0, 4, 36, 56, 0, 16
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1+2*x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; nn = Floor[Sqrt[nmax]]+1; poly = ConstantArray[0, nn^2 + 1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 0; Do[Do[poly[[j + 1]] += 2*poly[[j - k^2 + 1]], {j, nn^2, k^2, -1}];, {k, 2, nn}]; Take[poly, nmax+1]

Formula

a(n) ~ c^(1/3) * exp(3 * 2^(-4/3) * c^(2/3) * Pi^(1/3) * n^(1/3)) / (3 * 2^(2/3) * Pi^(1/3) * n^(5/6)), where c = -PolyLog(3/2, -2) = 1.28138038315976963883198... . - Vaclav Kotesovec, Dec 12 2016
From Alois P. Heinz, Feb 03 2021: (Start)
a(n) = Sum_{k>=0} 2^k * A341040(n,k).
a(n) = 0 <=> n in { A001422 }. (End)

A280225 G.f.: Product_{k>=1} (1 + 3*x^(k^2)) / (1-x^k).

Original entry on oeis.org

1, 4, 5, 9, 17, 34, 47, 75, 109, 165, 240, 341, 473, 671, 936, 1268, 1722, 2325, 3091, 4099, 5403, 7083, 9207, 11923, 15339, 19682, 25134, 31909, 40378, 50954, 64068, 80171, 100089, 124506, 154465, 191043, 235636, 289816, 355673, 435285, 531486, 647478
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 29 2016

Keywords

Comments

Convolution of A279368 and A000041.
In general, if m >= 0 and g.f. = Product_{k>=1} (1 + m*x^(k^2)) / (1-x^k), then a(n) ~ exp(Pi*sqrt((2*n)/3) + 3^(1/4)*c*n^(1/4)/ 2^(3/4) - 3*c^2/(32*Pi)) / (4*sqrt(3)*sqrt(m+1)*n), where c = -PolyLog(3/2, -m).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+3*x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt((2*n)/3) + 3^(1/4)*c*n^(1/4)/ 2^(3/4) - 3*c^2/(32*Pi)) / (8*sqrt(3)*n), where c = -PolyLog(3/2, -3).
Showing 1-3 of 3 results.