A279402 Domination number for queen graph on an n X n toroidal board.
1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 5, 8, 9, 8, 10, 10, 7, 11
Offset: 1
Examples
The minimal dominating set for the queens' graph on a 15 X 15 toroidal board is: ............... ..........Q.... ............... ............... .Q............. ............... ............... .......Q....... ............... ............... .............Q. ............... ............... ....Q.......... ............... Hence a(15) = 5.
References
- John J. Watkins, Across the Board: The Mathematics of Chessboard Problem, Princeton University Press, 2004, pp. 139-140.
Links
- A. P. Burger and C. M. Mynhardt, The domination number of the toroidal queens graph of size 3k × 3k, Australasian Journal of Combinatorics, 28 (2003), 137-148.
- Andy Huchala, Python program.
- Christina M. Mynhardt, Upper bounds for the domination numbers of toroidal queens graphs, Discussiones Mathematicae Graph Theory, 23 (2003), 163-175.
Formula
a(3*n) = n if n == 1, 5, 7, 11 (mod 12);
a(3*n) = n+1 if n == 2, 10 (mod 12);
a(3*n) = n+2 otherwise.
I.e., a(3*n) = 2*n - A085801(n).
Extensions
a(16)-a(22) from Andy Huchala, Mar 04 2024
Comments