cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279446 Number of non-equivalent (mod D_3) ways to place 6 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 66, 2096, 25676, 187984, 983172, 4073312, 14196011, 43309138, 118818916, 298926225, 699619679, 1540212590, 3217045155, 6419240369, 12304959047, 22763742133, 40797668697, 71065355815, 120643462032, 200077436639, 324808463585, 517088445952, 808515893580
Offset: 3

Views

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are not counted. For numbers if they are to be counted see A282998.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A282998, A239572, A032091 (2 points), A239573 (3 points), A239574 (4 points), A239575 (5 points).

Programs

  • Mathematica
    Table[Boole[n > 4] ((n^12 + 6 n^11 - 195 n^10 - 670 n^9 + 17455 n^8 + 13426 n^7 - 835256 n^6 + 1246240 n^5 + 19563664 n^4 - 68181792 n^3 - 131524224 n^2 + 969500160 n - 1298903040)/276480 + Boole[OddQ@ n] (162 n^5 - 715 n^4 - 4480 n^3 + 21955 n^2 + 1108 n - 41685)/30720 + Boole[Mod[n, 3] == 1] (n^2 + n - 25)/27), {n, 3, 28}] (* Michael De Vlieger, Feb 26 2017 *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3) + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 835256*n^6 + 1246240*n^5 + 19563664*n^4 - 68181792*n^3 - 131524224*n^2 + 969500160*n - 1298903040)/276480 + IF(MOD(n, 2) = 1, 162*n^5 - 715*n^4 - 4480*n^3 + 21955*n^2 + 1108*n - 41685)/30720 + IF(MOD(n, 3) = 1, n^2 + n - 25)/27 for n>=4.
G.f.: x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3). - Colin Barker, Feb 26 2017