cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279447 Number of nonequivalent ways to place 3 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.

Original entry on oeis.org

0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880, 60511, 98419, 153608, 233331, 343820, 496076, 699261, 969234, 1318885, 1770185, 2340646, 3059749, 3950618, 5051786, 6393075, 8023756, 9981531, 12328239, 15110740, 18405415, 22269656, 26796504, 32055353, 38158166
Offset: 1

Views

Author

Heinrich Ludwig, Dec 17 2016

Keywords

Comments

Column 4 of A279453.
Rotations and reflections of placements are not counted. For numbers if they are to be counted see A279437.
For condition "no more than 2 points on straight lines at any angle", see A235454.

Crossrefs

Same problem but 2, 4..7 points: A014409, A279448, A279449, A279450, A279451.

Programs

  • Magma
    I:=[0,1,14,73,301,890,2321,5166,10654,20055,35880]; [n le 11 select I[n] else 3*Self(n-1)+Self(n-2)-11*Self(n-3)+ 6*Self(n-4)+14*Self(n-5)-14*Self(n-6)-6*Self(n-7)+11*Self(n-8)-Self(n-9)-3*Self(n-10)+Self(n-11): n in [1..40]]; // Vincenzo Librandi, Dec 17 2016
    
  • Mathematica
    LinearRecurrence[{3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1},{0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880}, 35] (* Vincenzo Librandi Dec 17 2016 *)
  • PARI
    concat(0, Vec(x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^30))) \\ Colin Barker, Dec 17 2016

Formula

a(n) = (n^6 - 5*n^4 + 14*n^3 - 14*n^2 + 4*n)/48 + IF(MOD(n, 2) = 1, 2*n^3 - 3*n^2 + 1)/16.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
G.f.: x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4). - Colin Barker, Dec 17 2016