A279466 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 2, 2, 2, 6, 6, 2, 5, 20, 33, 20, 5, 8, 66, 180, 180, 66, 8, 15, 210, 1024, 1722, 1024, 210, 15, 26, 658, 5228, 15484, 15484, 5228, 658, 26, 46, 2036, 26670, 129914, 223261, 129914, 26670, 2036, 46, 80, 6236, 134438, 1079792, 3086910, 3086910
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0 ..1..0..1..0. .0..0..1..0. .1..1..1..1. .0..0..1..1. .1..1..1..1 ..1..0..0..1. .1..0..1..1. .0..1..0..0. .1..0..1..0. .0..0..1..0 ..1..1..0..0. .0..1..0..1. .1..0..1..0. .1..1..0..1. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Column 1 is A006367(n-1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: [order 10]
k=3: [order 36]
Comments