A279481 Count the primes appearing in each interval [p,q] where (p,q) is a Goldbach partition of 2n, and then add the results.
0, 0, 1, 2, 4, 2, 5, 8, 6, 9, 13, 12, 14, 10, 12, 12, 24, 22, 9, 20, 24, 27, 29, 38, 36, 24, 39, 29, 33, 43, 24, 58, 58, 17, 52, 60, 53, 63, 80, 46, 54, 87, 70, 46, 100, 62, 58, 87, 31, 79, 104, 71, 87, 119, 99, 116, 152, 114, 94, 181, 54, 82, 144, 39, 116, 133
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): A279481:=n->add( (pi(i)-pi(i-1)) * (pi(2*n-i)-pi(2*n-i-1)) * (pi(2*n-i)-pi(i-1)), i=2..n): 0,0,seq(A279481(n), n=3..100);
-
Mathematica
f[n_] := Sum[ Boole[ PrimeQ[ i]] Boole[ PrimeQ[ 2n -i]] (PrimePi[ 2n -i] - PrimePi[i -1]), {i, 2, n}]; f[2] = 0; Array[ f, 80] (* Robert G. Wilson v, Dec 15 2016 *)