A279483 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd determinant with no entry repeated.
0, 0, 0, 8, 24, 144, 240, 672, 960, 2000, 2640, 4680, 5880, 9408, 11424, 17024, 20160, 28512, 33120, 45000, 51480, 67760, 76560, 98208, 109824, 137904, 152880, 188552, 207480, 252000, 275520, 330240, 359040, 425408, 460224, 539784, 581400, 675792, 725040, 836000, 893760, 1023120, 1090320, 1240008
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Cf. A210370 (where the entries can be repeated).
Programs
-
Mathematica
CoefficientList[Series[8 x^3*(1 + 2 x + 11 x^2 + 4 x^3)/((1 - x)^5*(1 + x)^4), {x, 0, 43}], x] (* Michael De Vlieger, Dec 13 2016 *)
-
PARI
F(n, {r=0})={my(s=vector(2), v); forvec(y=vector(4, j, [0, n]), for(k=23*!!r, 23, v=numtoperm(4, k); s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++), 2*!r); return(s)} \\ a(n)=F(n, 0)[2];
-
PARI
concat(vector(3), Vec(8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Dec 13 2016
-
Python
def t(n): s=0 for a in range(0,n+1): for b in range(0,n+1): for c in range(0,n+1): for d in range(0,n+1): if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d): if (a*d-b*c)%2==1: s+=1 return s for i in range(0,201): print(i, t(i))
Formula
From Colin Barker, Dec 13 2016: (Start)
a(n) = (3*n^4 - 8*n^3 - 12*n^2 + 32*n)/8 for n even.
a(n) = (3*n^4 - 4*n^3 - 10*n^2 + 4*n + 7)/8 for n odd.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
G.f.: 8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4).
(End)