cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279483 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd determinant with no entry repeated.

Original entry on oeis.org

0, 0, 0, 8, 24, 144, 240, 672, 960, 2000, 2640, 4680, 5880, 9408, 11424, 17024, 20160, 28512, 33120, 45000, 51480, 67760, 76560, 98208, 109824, 137904, 152880, 188552, 207480, 252000, 275520, 330240, 359040, 425408, 460224, 539784, 581400, 675792, 725040, 836000, 893760, 1023120, 1090320, 1240008
Offset: 0

Views

Author

Indranil Ghosh, Dec 13 2016

Keywords

Crossrefs

Cf. A210370 (where the entries can be repeated).

Programs

  • Mathematica
    CoefficientList[Series[8 x^3*(1 + 2 x + 11 x^2 + 4 x^3)/((1 - x)^5*(1 + x)^4), {x, 0, 43}], x] (* Michael De Vlieger, Dec 13 2016 *)
  • PARI
    F(n, {r=0})={my(s=vector(2), v); forvec(y=vector(4, j, [0, n]), for(k=23*!!r, 23, v=numtoperm(4, k); s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++), 2*!r); return(s)} \\ a(n)=F(n, 0)[2];
    
  • PARI
    concat(vector(3), Vec(8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Dec 13 2016
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                for c in range(0,n+1):
                    for d in range(0,n+1):
                       if (a!=b  and a!=d and b!=d and c!=a and c!=b and c!=d):
                            if (a*d-b*c)%2==1:
                                s+=1
        return s
    for i in range(0,201):
        print(i, t(i))
    

Formula

From Colin Barker, Dec 13 2016: (Start)
a(n) = (3*n^4 - 8*n^3 - 12*n^2 + 32*n)/8 for n even.
a(n) = (3*n^4 - 4*n^3 - 10*n^2 + 4*n + 7)/8 for n odd.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
G.f.: 8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4).
(End)