A279496 Number of square pyramidal numbers dividing n.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1
Examples
a(10) = 2 because 10 has 4 divisors {1,2,5,10} among which 2 divisors {1,5} are square pyramidal numbers.
Links
- Eric Weisstein's World of Mathematics, Square Pyramidal Number.
- Index to sequences related to pyramidal numbers.
Programs
-
Mathematica
Rest[CoefficientList[Series[Sum[x^(k (k + 1) (2 k + 1)/6)/(1 - x^(k (k + 1) (2 k + 1)/6)), {k, 120}], {x, 0, 120}], x]]
Formula
G.f.: Sum_{k>=1} x^(k*(k+1)*(2*k+1)/6)/(1 - x^(k*(k+1)*(2*k+1)/6)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 18 - 24*log(2) = 1.364467... . - Amiram Eldar, Jan 02 2024