cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279496 Number of square pyramidal numbers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2016

Keywords

Examples

			a(10) = 2 because 10 has 4 divisors {1,2,5,10} among which 2 divisors {1,5} are square pyramidal numbers.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[Sum[x^(k (k + 1) (2 k + 1)/6)/(1 - x^(k (k + 1) (2 k + 1)/6)), {k, 120}], {x, 0, 120}], x]]

Formula

G.f.: Sum_{k>=1} x^(k*(k+1)*(2*k+1)/6)/(1 - x^(k*(k+1)*(2*k+1)/6)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 18 - 24*log(2) = 1.364467... . - Amiram Eldar, Jan 02 2024