A279509 a(n) = largest number k such that floor(phi(k)/tau(k)) = n.
12, 60, 180, 240, 420, 480, 840, 462, 1260, 1680, 1440, 690, 2520, 2100, 2160, 2310, 3360, 2400, 3780, 5040, 4620, 3600, 3300, 1410, 5460, 4080, 6300, 7560, 5880, 4140, 9240, 2646, 10080, 6600, 6480, 7200, 10920, 8820, 9360, 2370, 13860, 8640, 8160, 15120
Offset: 0
Keywords
Examples
For n = 1; a(1) = 60 because 60 is the largest number with floor(phi(60)/tau(60)) = floor(16/12) = 1.
Programs
-
Magma
[Max([n: n in[1..100000] | Floor(EulerPhi(n) / NumberOfDivisors(n)) eq k]): k in [0..50]]
Comments