cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279513 Multiplicative with a(p^k) = p*a(k) for any prime p and k>0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 6, 10, 11, 12, 13, 14, 15, 8, 17, 12, 19, 20, 21, 22, 23, 18, 10, 26, 9, 28, 29, 30, 31, 10, 33, 34, 35, 24, 37, 38, 39, 30, 41, 42, 43, 44, 30, 46, 47, 24, 14, 20, 51, 52, 53, 18, 55, 42, 57, 58, 59, 60, 61, 62, 42, 12, 65, 66, 67, 68
Offset: 1

Views

Author

Rémy Sigrist, Dec 13 2016

Keywords

Comments

To compute a(n): multiply (with multiplicity) each prime number appearing in the prime tower factorization of n (see A182318 for definition).
a(n) = n if n is squarefree.
a(n) <= A000026(n) for any n>0.
First differs from A000026 at n=256: a(256)=12 and A000026(256)=16.
If n = p_1 * p_2 * ... * p_k with p_1, p_2, ..., p_k primes, then a(p_1 ^ p_2 ^ ... ^ p_k) = n.

Examples

			a(6!) = a(2^(2^2)*3^2*5) = 2*2*2*3*2*5 = 240.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.33 Hall-Montgomery Constant, p. 207.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          mul(i[1]*a(i[2]), i=ifactors(n)[2]))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 22 2020
  • Mathematica
    a[n_] := a[n] = If[n==1, 1, Times @@ (#[[1]] a[#[[2]]]& /@ FactorInteger[n] )]; Array[a, 256] (* Jean-François Alcover, Mar 31 2017 *)
  • PARI
    a(n) =  my (f=factor(n)); return (prod(i=1, #f~, f[i,1]*a(f[i,2])))

Formula

Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/p^2 + (p-1)*Sum_{k>=2} a(k)/p^(2*k)) = 0.8351076361... (Gilman and Tschiersch, 1993; Finch, 2003; the constant was calculated by Kevin Ford). - Amiram Eldar, Nov 04 2022