A279543 a(n) = a(n-1) + 3^n * a(n-2) with a(0) = 1 and a(1) = 1.
1, 1, 10, 37, 847, 9838, 627301, 22143007, 4137864868, 439978671649, 244776761262181, 78185678507867584, 130162592460442600405, 124783388108159412726037, 622688428086038843429228482, 1791127919536971393223950620041
Offset: 0
Keywords
Examples
1/1 = a(0)/A015460(2). 1/(1+3/1) = 1/4 = a(1)/A015460(3). 1/(1+3/(1+3^2/1)) = 10/13 = a(2)/A015460(4). 1/(1+3/(1+3^2/(1+3^3/1))) = 37/121 = a(3)/A015460(5).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..90
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1] + 3^n*a[n - 2], a[0] == 1, a[1] == 1}, a, {n, 15}] (* Michael De Vlieger, Dec 31 2016 *)
Comments