cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279613 Expansion of the g.f. of A160534 in powers of A121593.

Original entry on oeis.org

1, -7, 42, -231, 1155, -4998, 15827, -791, -566244, 6506955, -53524611, 369879930, -2218053747, 11306008875, -43772711220, 55203364377, 1172838094533, -16542312772356, 150992704165079, -1130142960861845, 7290759457923816
Offset: 1

Views

Author

Lynette O'Brien, Dec 15 2016

Keywords

Comments

(eta(q))^7/eta(7*q) in powers of (eta(7*q)/eta(q))^4.
This sequence is u_n in Theorem 6.5 in O'Brien's thesis.

Examples

			G.f.: 1 - 7*x + 42*x^2 - 231*x^3 + 1155*x^4 - 4998*x^5 + ...
		

References

  • L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.

Crossrefs

Formula

(n+1)^4a_7(n+1)=-(26*n^4+52*n^3+58*n^2+32*n+7)a_7(n)-(267*n^4+268*n^2+18)a_7(n-1)-(1274*n^4-2548*n^3+2842*n^2-1568*n+343)a_7(n-2)-2401(n-1)^4a_7(n-3)
with a_7(0)=1, a_7(-1)=a_7(-2)=a_7(-3)=0.
asymptotic conjecture: a(n) ~ C n^(-4/3) 7^n cos( n( arctan( (3*sqrt 3)/13) +Pi -1.083913253)), where C = 6.502807770...